1. DATOS INFORMATIVOS

DEPARTAMENTO:		ÁREA DE CONOCIMIENTO:			
ELECTRICA Y ELECTRONICA		SISTEMAS ELECTRICOS			
NOMBRE DE LA ASIGNATURA:		PERIODO ACADÉMICO:			
FUND D CIRCUITOS ELECTRICOS		PREGRADO S-I MAY 23 - SEP 23			
CÓDIGO:		No. CREDITOS:	NIVEL:		
A0601		4	PREGRADO		
FECHA ELABORACIÓN:	EJE DE FORMACIÓN	HORAS / SEMANA			
	PÁGIGA	TEÓRICAS:	PRÁCTICAS/LABORATORIOS		
01/12/2020	BÁSICA				

DESCRIPCIÓN DE LA ASIGNATURA:

Fundamentos de Circuitos Eléctricos, es una asignatura de formación básica que utiliza los métodos teóricos y prácticos para analizar el comportamiento de circuitos eléctricos operando en estado estable de corriente continua y de corriente alterna hasta llegar al análisis de circuitos más complejos que utilizan el acoplamiento magnético entre inductores. La práctica se la realiza a través de experimentos guiados con instrumentos de laboratorio, herramientas de software para simulación de circuitos y proyectos técnicos.

CONTRIBUCIÓN DE LA ASIGNATURA A LA FORMACIÓN PROFESIONAL:

Esta asignatura corresponde a la primera etapa del eje de formación y proporciona al futuro profesional las bases conceptuales de leyes y principios de los circuitos eléctricos, dando soporte al resto de asignaturas de las carreras de ingeniería..

RESULTADO DE APRENDIZAJE DE LA CARRERA (UNIDAD DE COMPETENCIA):

Analiza el comportamiento de redes eléctricas empleando métodos de cálculo matemático, herramientas de simulación y dispositivos de medición

OBJETIVO DE LA ASIGNATURA:

Realizar el análisis teórico y práctico del comportamiento de redes eléctricas de corriente continua y corriente alterna en régimen permanente

RESULTADO DE APRENDIZAJE DE LA ASIGNATURA: (ELEMENTO DE COMPETENCIA):

- Conoce las variables, magnitudes eléctricas y los principios fundamentales de la electricidad.
- Conoce y aplica métodos sistemáticos para el análisis del comportamiento de circuitos eléctricos.
- Maneja dispositivos, materiales, instrumentos de medición y software de simulación en la implementación de circuitos eléctricos básicos.

2. SISTEMA DE CONTENIDOS Y RESULTADOS DEL APRENDIZAJE

UNIDADES DE CONTENIDOS				
Unidad 1	Resultados de Aprendizaje de la Unidad 1			
ANALISIS DE CIRCUITOS EN ESTADO ESTABLE	Conoce las variables, magnitudes eléctricas, elementos y los principios fundamentales de los circuitos eléctricos			

CONCEPTOS GENERALES EN ELECTRICIDAD

Introducción

Definiciones y unidades de magnitudes eléctricas: carga, corriente, voltaje, frecuencia, potencia, energía

Materiales eléctricos: conductor, semiconductor, aislante

Instrumentos de medición: voltímetro, amperímetro, óhmetro, vatímetro

EL CIRCUITO ELÉCTRICO

Definiciones generales: circuito eléctrico, lazo, malla, nodo y rama

Elementos eléctricos: Resistencia, Inductancia, Capacitancia

Elementos activos y pasivos

Fuentes de voltaje y corriente (independientes, dependientes, reales e ideales)

Relaciones de voltaje y corriente en elementos activos y pasivos

Leyes Fundamentales de la Electricidad: Ley de Ohm y leyes de Kirchhoff

Referencias eléctricas: neutro, tierra y masa

COMBINACIONES SERIE, PARALELO Y MIXTAS

Combinación de resistores

UNIDADES DE CONTENIDOS

Combinación de inductores

Combinación de capacitores

DIVISORES DE VOLTAJE Y CORRIENTE

Divisor de voltaje

Divisor de corriente

TRANSFORMACIONES CON ELEMENTOS PASIVOS Y ACTIVOS

Transformación triángulo-estrella y viceversa

Transformación de fuentes

Análisis de circuitos con herramientas computacionales

Simulación de circuitos eléctricos en DC

Unidad 2

Resultados de Aprendizaje de la Unidad 2

TEOREMAS, POTENCIA Y ENERGIA EN CIRCUITOS ELECTRICOS

Conoce y aplica métodos sistemáticos para el análisis del comportamiento de circuitos eléctricos.

ONDAS SENOIDALES Y FASORES

Representación en el dominio del tiempo: magnitud, frecuencia y fase

Promedios temporales: Valor medio y valor eficaz (RMS)

Representación en el dominio de la frecuencia: concepto de fasor y diagramas fasoriales

Relaciones fasoriales de voltaje y corriente: Impedancia y admitancia

Circuitos eléctricos de corriente alterna

Instrumentos de medida en AC: Voltímetro, Amperímetro, Osciloscopio, Vatímetro

MÉTODOS SISTEMATICOS PARA EL ANÁLISIS DE CIRCUITOS ELÉCTRICOS

Método de los voltajes de Nodo

Método de las corrientes de Malla

TEOREMAS DE CIRCUITOS

Superposición

Thevenin y Norton

POTENCIA EN CIRCUITOS ELÉCTRICOS

Potencia instantánea y potencia promedio

Potencia compleja: activa, reactiva, aparente y triángulo de potencias

Factor de potencia: medición y corrección del factor de potencia

Métodos de Medición de potencia: activa y reactiva

La máxima transferencia de potencia

Análisis de circuitos con herramientas computacionales

Simulación de circuitos eléctricos en AC

ENERGÍA EN SISTEMAS ELÉCTRICOS

Consumo y demanda de energía eléctrica

Eficiencia eléctrica: relación entrada-salida de Potencia Activa

Unidad 3

Resultados de Aprendizaje de la Unidad 3

CIRCUITOS CON ACOPLAMIENTO MAGNETICO Y AMPLIFICADOR OPERACIONAL

Maneja dispositivos, materiales, instrumentos de medición y software de simulación en la implementación de circuitos eléctricos básicos

ACOPLAMIENTO MAGNÉTICO DE CIRCUITOS

Principios Básicos de Electromagnetismo

Leyes de Lenz y Faraday

Inductancia mutua

Polaridad del voltaje mutuamente inducido: regla de los puntos

Utilización de los puntos en el análisis de circuitos eléctricos

Cálculos de energía con inductancia mutua

EL TRANSFORMADOR LINEAL

UNIDADES DE CONTENIDOS

Modelo de circuito equivalente

Impedancia reflejada

Eficiencia del transformador

EL TRANSFORMADOR IDEAL

Propiedades del transformador ideal

Determinación de las relaciones de voltaje y corriente

Diagrama eléctrico y polaridad de las relaciones de voltaje y corriente

El transformador ideal para adaptar impedancias

CIRCUITOS CON AMPLIFICADOR OPERACIONAL

Características eléctricas generales de un AO

Modelo de un amplificador operacional Ideal

Análisis de circuitos básicos con AO (Inversor, Sumador, Integrador, Diferencial)

Simulación de circuitos con amplificadores operacionales.

3. PROYECCIÓN METODOLÓGICA Y ORGANIZATIVA PARA EL DESARROLLO DE LA ASIGNATURA

(PROYECCIÓN DE LOS MÉTODOS DE ENZEÑANZA - APRENDIZAJE QUE SE UTILIZARÁN)

- 1 Talleres
- 2 Clase Magistral
- 3 Resolución de Problemas
- 4 Diseño de proyectos, modelos y prototipos
- 5 Prácticas de Laboratorío

PROYECCIÓN DEL EMPLEO DE LA TIC EN LOS PROCESOS DE APRENDIZAJE

- 1 Software de Simulación
- 2 Aula Virtual

4. TÉCNICAS Y PONDERACIÓN DE LA EVALUACIÓN

- En este espacio se expresarán las técnicas utilizadas en la evaluación del proceso de enseñanza aprendizaje o evaluación formativa y sumativa.
- Las técnicas que se recomienda usar son: Resolución de ejercicios, Investigación Bibliográfica, Lecciones oral/escrita,
 Pruebas orales/escrita, Laboratorios, Talleres, Solución de problemas, Prácticas, Exposición, Trabajo colaborativo,
 Examen parcial, Otras formas de evaluación.
- Recordar que mientras más técnicas utilicen, la evaluación será más objetiva y el desempeño del estudiante se reflejará en su rendimiento (4 o 5 técnicas).
- Para evaluar se deberá aplicar la rúbrica en cada una de las técnicas de evaluación empleadas. Se debe expresar en puntaje de la nota final sobre 20 puntos. No debe existir una diferencia mayor a dos puntos entre cada técnica de evaluación empleada.
- En la modalidad presencial existen tres parciales en la modalidad a distancia existen dos parciales, toda la planificación de periodo académico se la realiza en función del número de parciales de cada modalidad.
 - La ponderación a utilizarse en la evaluación del aprendizaje del estudiante será la misma en las tres parciales.
- Para la aprobación de una asignatura se debe tener una nota final promedio de 14/20, en los tres o dos parciales.

5. BIBLIOGRAFÍA BÁSICA/ TEXTO GUÍA DE LA ASIGNATURA

Titulo	Autor	Edición	Año	Idioma	Editorial
Análisis básico de circuitos en ingeniería	Irwin, J. David	-	1997	Español	México, D. F. : Prentice- Hall
Circuitos eléctricos	Dorf, Richard C.	-	2011	Español	México, D. F. : Alfaomega
Análisis básicos de circuitos eléctricos	Johnson, David E.	-	1991	spa	México : Prentice Hall Hispanoamericana
Análisis de circuitos en ingeniería	Hayt, William H.	-	1993	spa	México : McGraw- Hill/Interamericana de México, S.A. de C.V.

6. FIRMAS DE LEGALIZACIÓN

DIEGO EDMUNDO ORTIZ VILLALBA COORDINADOR DE AREA DE CONOCIMIENTO	DIRECTOR DE CARRERA
FABIÁN ARMANDO ÁLVAREZ SA DIRECTOR DE DEPARTAM	